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Setting the Context: Three Major Technology Trends Transforming the World

Data, Algorithms, and Computing Power
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Setting the Context: Three Major Technology Trends Transforming the World

Data, Algorithms, and Computing Power
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Setting the Context: The Current Al Landscape

Artificial Intelligence

Machine Learning
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Natural Language Processing

Deep Learning
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Navigating the Ocean of Alternative Data
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Alternative Data

The data landscape has changed over time

Source: Matt Turck
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Alternative Data
The data landscape has changed over time
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Alternative Data is distinct from traditional data
At the same time, some alternative datasets are becoming more mainstream

Traditional Data L ‘ Market + Fundamentals THO}\./.I.SON STANDARD
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Usually very
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AL . Research through Technology
7~ benefits

9 Surfing the ocean of alternative data to reach new investment heights - Momentum Think Tank 2023 - ROB = CO




Example I: Corporate Violation and Penalty
Based on Government data collected by an NGO

> Sensibility: the announcement of a regulatory violation is an exceptionally
clean signal to the market about the extent to which the firm in question
abides by its legal obligations (Armour et al., 2017)

> Excessive violations and penalties versus industry peers can possibly
indicate not only lax governance structure and low management quality,
but possibly also ineffective/risk-prone corporate culture

Others
employment discrimination 11%
2%

labor relations violation

workplace safety or
health violation
34%

wage and hour violation
6%

aviation safety violation
6%

railroad safety violation
17%

environmental violation
20%

rallroads
11%

mining and minerals

Others 0%
36%
oil and ga
diversified
building materials %
3% _—
utilities and power generation a':::m
3% " iz retailing g
metals financial servicesthemicals

4% 4%
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Example II: Institutional Investor Site Visits
Unique data particular to the Chinese A-shares market

These visits and meetings are
Both Shanghai and Shenzhen ' a good proxy for institutional
exchanges mandate listed investor interests and can be
corporations disclose used as an indication of both

company site visits corporate outperformance
(stock-selection) and industry

aggregate views (industry-

timing)
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Machine Learning for Quant Investing
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What is machine learning?

“Machine learning algorithms improve automatically through experience and by the use of data.”

Traditional programming

Machine Learning

Data

((

Program

!

13

Data
o~
S
L —
Output
\ : V4
Output
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Advantages of Machine Learning techniques

iy
x i o S : ) .
Data driven Qlo Flexible Forward-looking
» ldentify most relevant features » Allow for nonlinear relations » Prevent lookahead bias
» Efficient research cycle » Allow for interaction effects » Deduce structural patterns
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Example llI: Predicting returns using Machine Learning

News and return reversal interaction

News changes the inherent value of a security

/@Q \\\
S S~
\é‘olo A'~ T~
RN e
N == .’
N . -
t=0 \\\ =1 Price flggs,not’ t=2
N _ -~ Tévert

Oh no,
another
downgrade!

Predicted Return over the next 10 days

Return over
past 10 days

Abnormal News Count over the past 10 days

Less More
Abnormal No Change Abnormal
News News
11% 9% 7% 5% 3% 1% -1%
6% 5% 4% 3% 1% 0% -1%
No Change 1% 0% 0% 0% 0% 0% -1%
-4% -4% -3% -3% -2% -1% -1%
-10% -8% -7% -5% -3% -2% 0%
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From NLP to Alpha
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NLP

Translating text to mathematical objects

17

> The general NLP process

/ Gathering and cleaning \

textual data
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Tokenize textual data

~

ra
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NLP applications

Sentiment classification Zero-Shot classification Sentence similarity

>

18

|dentify text tone > Train a model on some classes

>  Predict a class the model does

Inputs

Text Input
Dune is the best movie ever.

Candidate Labels
CINEMA, ART, MUsic  Output

CINEMA

-

ART

MUSIC

Surfing the ocean of alternative data to reach new investment heights -

> Translate sentences to coordinates

not know > Calculate distance between coordinates

Use the coordinate key to draw points on the graph.

10 | ®
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7
: i ®(5.4
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Example IV: Industry classification

> GICS classification is intuitive but limited
> ML techniques can incorporate a lot more information and make more realistic peer groups

> Optimal peer identification combines human understanding with data-driven grouping

Accenture

Interactive Media Retail

Mastercard

amazon Pinterest
N/

Motorola

Google

Salesforce

Broadcasting Hardware

’

Zoom

NXP
Semiconductors

NETFLIX

Netflix Oracle

Source: Robeco, Refinitiv. For illustration only.
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Example V: The value of an earnings call

K

< Analysts

—Presentation =——Q&A Company =—=Q&A Analyst
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Example VI: Lost in translation
The underlying language matters

Cumulative return LinkedIn post

Quant Chart: Lost in translation

robeco.com = 2 min read

—English NLP Chinese NLP  ===NLP COMB
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Conclusion and Q&A
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Conclusion

» Like in many other industries, big data and Al (next-gen quant applications) is here to stay in asset management

» Although most natural for quant investing, next-gen quant applications can also be of great help in fundamental
investing

» Quant: next-gen quant can be used to detect non-linear patterns, estimate sentiments and trending topics, etc.

» Fundamental: next-gen quant applications can be used to summarize research reports, suggest investment ideas,
(mostly) automate report writing, etc.

» Next-gen quant is not a panacea, but it can tremendously augment existing capabilities and increase efficiency
» At the same time, it is still very important to keep “human-in-the-loop”, especially for Al applications

» The technology may seem daunting, but the barrier to entry is being lowered continuously. At the same time, many
firms are racing ahead in their own exploration. The time to start is today!
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For Further Reading

151N

Handbook of Artificial I and Big Data A

1. ON MACHINE LEARNING APPLICATIONS

IN INVESTMENTS

Mike Chen, PhD
Head. Attemative Alpha Research. Robeco

Weili Zhou, CFA
Head, Quant Equity Research, Robeco

Introduction

In recent years, machine learning (ML) has been a popular
Technigue In various domains, ranging from streaming video
and online shopping recommendations to Image detection
and generation to autonomaous driving. The attraction and
desire to apply machine learning In finance are no different.

. *The giobal Al fintech market IS predicted to grow at a
CAGR of 25.3% between 2022 and 2027 (Columbus
2020).

= "Asurvey of IT executves In banking finds that 85%
Nhave & 'Clear strategy’ for adopting Al In developing
NEW Products and Services” (Nadeem 2018).

PULtING 3sI0e the common and widespread confusion
Dbetween artificial intelligence (Al) and ML (see, .0..Ca0
2018; Nadeem 2018), the growth of ML In finance Is pro-
Jected to be much faster than that of the overall Industry
[tself. 35 the previous quotes suggest. Faced with this
oUtlook, practitioners may want answers to the following
questions:

*  What does ML bring to the table compared with tradi-
tional techniques?

. How do | make ML for finance work? Are there special
considerations? What are some common pifalis?

. What are some examples of ML applied to finance?
In this chapter. we explore how ML can be applied from

a practitioners perspective and attempt to answer many
COMMOoN questions, INcluding the ones above.!

The first section of the chapter discusses practl-
tloners' motivations for using ML common challenges in

Implementing ML for finance, and solutions. The second
section discusses several Concrete examples of ML appli-
cations In finance and, In particular, equity Investments.

Motlvations, Challenges,
and Solutlons In Applying ML
In Investments

IN this SECtion, We dISCUSS reasons for applying ML, the
unigue challenges INVoVed, and Now to avold common
pitfalis In the process.

Motivations

The primary attraction of applying ML Lo equity Ivesting, as
WITN 2IMoSt all INVESTMENT-TEIated ENdeavors, IS e promise
of higher risk-adjusted return. The Nypotnesis Is that these
TECNNIQUES, eXpIICtly designed for prediction tasks based on
nigh-imensional data and WIthout any functional Torm spec-
ITICAtIoN, Should excel at predicting future equity returms.

EMErging academic IIterature and collective practitioner
EXPErENCce SUPPO thiS Nypothesis. IN recent years, practi-
tioners nave sUCCesstully applied ML algonthms to predict
equity returns, and ML-based return prediction algoritnms
nave been making thelr way INto guantitative Investment
models. These algorthms have been used worldwide In
Doth developed and emerging markets, for large-cap and
small-cap Investment universes, and with single-country
o multi-country strategies.? In general, practitioners have
found that ML-derved alpha models outpertorm those
generated from more traditional linear models? In predicting
Cross-Sectional equity retums.

'Readers interested In the theoretical underpinnings of ML algorithms, such as random forest or neural networks, should read Hastie, Tibshirani,

and Friedman {2008} and Goodfeliow, Benglo, and Courvilia (20181

=There are also NUMeroUs acatemic studlies on using ML to predict returns. For example, ML techniques have been applied In a single-country
setting by Gu, Kelly, and Xlu {2020) to the United States, by Abe and Nakayama (2018) to Japan, and by Leippold, Wang, and Zhou (2022} to
China's A-share markets. Similarty, in a multi-country/regional setting, ML has been appiied by Tobek and Hronec (2021) and Leung, Lonre,
Mischilch. Shea, and Stroh (2021) to developed markets and by Hanauer and Kalsbach (2022) to emerging markets.

SFor linear equity models, see, for example, Grinold and Kahn (1999).

e = =il o ik
Harnessing GPT for sma

asset management:
‘Prospects:and perils

- Generative models like GPT could revolutionize the industry

- These models offer potential benefits while also presenting challenges

- Asset management can adapt and embrace GPT while also addressing
limitations

Since its launch on 30 November 2022, ChatGPT' has b the fastest application to reach 100 million
monthly active users The excitement that the model has generated in the public's imagination has led to wild
predictions about its impact on all aspects of society, ranging from the overly optimistic to the profoundly
pessimistic. Less than six months after ChatGPT's launch, GPT-4 was released. As the time of writing, GPT-4
appears to be significantly more powerful than ChatGPT. So, what does it all mean?

In this article, we take a clear-eyed look at some possible implications of GPT, and more broadly, generative
models, on the asset management industry. We give examples of how GPT might be applied in various workflows
commen to the asset management industry, and how asset owners and managers could position themselves to
benefit as much as possible from the anticipated future generative model evolution. We begin our discussion by
briefly looking back on the development of natural language processing (NLP) models that have led to Generative
Pre-trained Transformers (GPT).

A quick survey on NLP models

NLP is a subfield of machine learning (ML) that focuses on enabling computers to understand, interpret, and
generate human language. It combines computational techniques with linguistic knowledge to do this in a way that
mimics human understanding and communication. Since the first NLP model in the 19603+, leaps in computational
power particularly in the last three decades have meant that the ability to analyze, process and interact with text
on an ever-larger scale has increased tremendously.

NLP applications for financial investments in particular started in 2007 with the humble bag-of-words (BoW)
approachs, which is based on identifying words associated with either positive or negative sentiment as listed in a
dictionary. Despite the simple nature of the model, 8 BoW approach to basic sentiment detection (overall positive
or overall negative) works surprisingly well.

" part from the sxample given, nane of this paper was written by ChatGRT or any sther form of &
? https-t/aibuzine: /nlp/ub f-all-t
3 ChaiGPT sets record for fastest-orowing user base - analyst note | Beuters

4 ELIZA, developed by Joseph Weizenbaum

5 See Tedock (2007) and Loughran and McDonald (2011}
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